国际象棋中用8个皇后摆在不同的格而且互相不牵制有多少种不同的摆法?
八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。计算机发明后,有多种方法可以解决此问题。八皇后问题一共有 92 个互不相同的解。如果将旋转和对称的解归为一种的话,则一共有12个独立解 希望我的回答能帮到你^_^八皇后问题最简单算法?
所谓八皇后问题就是有一个8*8的棋盘,然后在这个棋盘中摆放八个皇后,并且要求这八个皇后不能同时出现在同一行同一列或者同意线上。
递归调用的解法,如果我用一位数组存储八皇后的位置的话,定义一个数组c[i]=j,表示在第i行的第j列摆放一个皇后,因为每个皇后都存储在不同的行上,这样我们就可以忽略行的问题,只考虑列元素的位置,这个问题的关键在于怎么递归调用上,每次我们从第i行的第j列开始寻找,如果满足条件则递归寻找第i+1行,如果不满足寻找第j+1列的元素,直到i==8查找到一个存储模式,递归终止。
解决八皇后问题的经典算法是?
八皇后问题的经典算法是回溯算法
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。 高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
最直接的也是最容易想到的一种解法便是暴力法,我们可以在8×8的格子中任选8个皇后,选定后看是否满足任意两个皇后都不处于同行同列同斜线的条件,若满足则累计满足条件的方案。学习过排列组合的我们发现64取8这个数字达到了40亿,显然是令人难以接受的。
c语言部分算法有哪些?
0)穷举法
穷举法简单粗暴,没有什么问题是搞不定的,只要你肯花时间。同时对于小数据量,穷举法就是最优秀的算法。就像太祖长拳,简单,人人都能会,能解决问题,但是与真正的高手过招,就颓了。
1) 贪婪算法
贪婪算法可以获取到问题的局部最优解,不一定能获取到全局最优解,同时获取最优解的好坏要看贪婪策略的选择。特点就是简单,能获取到局部最优解。就像打狗棍法,同一套棍法,洪七公和鲁有脚的水平就差太多了,因此同样是贪婪算法,不同的贪婪策略会导致得到差异非常大的结果。
2) 动态规划算法
当最优化问题具有重复子问题和最优子结构的时候,就是动态规划出场的时候了。动态规划算法的核心就是提供了一个memory来缓存重复子问题的结果,避免了递归的过程中的大量的重复计算。动态规划算法的难点在于怎么将问题转化为能够利用动态规划算法来解决。当重复子问题的数目比较小时,动态规划的效果也会很差。如果问题存在大量的重复子问题的话,那么动态规划对于效率的提高是非常恐怖的。就像斗转星移武功,对手强它也会比较强,对手若,他也会比较弱。
3)分治算法
分治算法的逻辑更简单了,就是一个词,分而治之。分治算法就是把一个大的问题分为若干个子问题,然后在子问题继续向下分,一直到base cases,通过base cases的解决,一步步向上,最终解决最初的大问题。分治算法是递归的典型应用。
4) 回溯算法
回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个
分岔路,在选一条路走,一直这样递归下去,直到遍历万所有的路径。八皇后问题是回溯算法的一个经典问题,还有一个经典的应用场景就是迷宫问题。
5) 分支限界算法
回溯算法是深度优先,那么分支限界法就是广度优先的一个经典的例子。回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解(一般来说要获取最优解)。

